
Symmetry properties of intra-atomic spin and angular momentum densities: application to

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 7095

(http://iopscience.iop.org/0953-8984/9/33/012)

Download details:

IP Address: 171.66.16.209

The article was downloaded on 14/05/2010 at 10:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/33
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 7095–7104. Printed in the UK PII: S0953-8984(97)83683-1

Symmetry properties of intra-atomic spin and angular
momentum densities: application to U3Sb4
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Abstract. We consider the formation of the atomic spin and orbital moments in the framework
of the local spin-density functional approximation by examining and exhibiting the symmetry
properties of the intra-atomic spin and angular momentum densities, focusing on general
principles, and elaborating by means of the realistic example of U3Sb4 which is a noncollinear
ferromagnet. We expose the role of the symmetry properties in determining the intra-atomic
noncollinearity of the spin and orbital moments, which we connect with the inter-atomic
configurations of the atomic moments.

1. Introduction

The magnetic moment of an atom in a crystal is composed of two parts, one originating
from the spin of the electrons, and the other from their orbital motion. In the magnetism
of the 3d metals and compounds, the orbital moment plays a secondary role only, and can
be treated as a small correction to the spin moment. The few exceptions where a peculiar
compensation of the spin moments of different atoms leads to orbital moments being of
primary importance (see, e.g., [1, 2]) rather confirm this statement than contradict it. With
increasing atomic number of the constituent atoms, the spin–orbit coupling (SOC) grows,
and, since SOC is closely connected with the formation of the orbital moment, this part
of the magnetic moment gains importance for heavier systems. Thus, investigations of
uranium compounds (see, e.g., [3–6, 8]) have shown that, in striking contrast to the case
for 3d systems, the value of the orbital moment of the U atom usually exceeds the value of
its spin moment.

Since the magnetic moments of various U compounds (see, e.g., [5, 6] and references
therein) have been successfully calculated using the local density functional approximation
(LDA) [7], we may assume that the LDA provides a solid theoretical basis. Yet, up to
now, only the integrated atomic orbital moments have been obtained, and no attempt has
been made to investigate their formation on the basis of intra-atomic angular momentum
densities. With the present communication we want to contribute to filling this gap, and
report calculations of the intra-atomic angular momentum densities.

Recent findings concerning the noncollinearity of the magnetic structure of a number of
the U compounds [6, 8] provide a further incentive to examine the formation of magnetic
moments. In particular, it was shown that for a broad class of U compounds a collinear
arrangement of the atomic moments is improbable. We supplied [6, 8] symmetry arguments
supporting this statement, and suggested addressing this phenomenon asnoncollinearity
predetermined by symmetry. This kind of magnetic structure possesses the additional
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interesting feature of showing an inevitable noncollinearity of the spin and orbital moments
residing on the same atom. This new type of magnetic noncollinearity has been detected in
a number of theoretical studies [1, 6, 9, 10], and appears to be important for the explanation
of the weak ferromagnetism of Mn3Sn [1] as well as the magneto-optical properties of
LaTO3 [2]. In the present paper we show how this type of noncollinearity emerges from
the properties of the spatial distribution of the corresponding intra-atomic densities.

The theory is applied to the ferromagnetic noncollinear compound U3Sb4 which, for
our purposes, is convenient for the following reasons. First, we have recently [6] studied
the integrated atomic magnetic characteristics of U3Sb4 which supplies a good basis for the
present investigation. Second, the six U atoms in the unit cell of U3Sb4 separate into two
groups of inequivalent atoms. This enables us to contrast and interpret the properties of the
two groups in terms of features of the spin and angular momentum densities.

This communication is also motivated by the recent work of Nordström and Singh [11],
who calculated the spin density in a collinear ferromagnetic state of Pu and found the density
to be noncollinear. These authors use a full-potential method to treat the noncollinearity
of the intra-atomic spin density (SD) self-consistently. In the closing part of the paper,
Nordstr̈om and Singh commented on our calculation for the ferromagnet U3P4 [8], and
argued that the noncollinearity of the magnetic structure obtained by us cannot be related
to the properties of the spin density because of the atomic sphere approximation (ASA)
used in our calculations. This comment, however, has no basis, as we show by supplying
symmetry arguments and providing results of direct calculations.

2. Calculational approach

An effective single-particle Hamiltonian has been written as a sum of three contributions [5,
6, 12]:

Ĥ = Ĥsc + Ĥso + Ĥorb. (1)

Here the first part is the scalar-relativistic Hamiltonian of a noncollinear magnet given by

Ĥsc =
∑
ν

U†(θν, φν)
(
H
ν↑
sc 0
0 H

ν↓
sc

)
U(θν, φν). (2)

U(θν, φν) is a standard spin-1
2-rotation matrix transforming a global coordinate system into a

local system of atomν; Hν↑
sc andHν↓

sc are the standard atomic scalar-relativistic Hamiltonians
(spin up, spin down) [13] in the local frame of reference for the atom at siteν. The potentials
entering these Hamiltonians are as usual in the LDA obtained via functional derivatives as
discussed in reference [14].

The second term of the Hamiltonian (1) includes the spin–orbit coupling, and can be
written in the local coordinate system of theνth atom as follows [8]:

Ĥso =
∑
α

Mνασναl̂να. (3)

Here the subscriptα labels the Cartesian coordinates,σν is the vector of the Pauli spin
matrices, and̂lν is the angular momentum operator. The coefficientsMαν can be found in
[5].

To simulate the second Hund’s rule, we follow the work of Erikssonet al [15], and add
to the Hamiltonian of the problem an effective orbital-field termĤorb. In the atomic sphere
of the νth atom, this term has been written as

Ĥorb = IorbLzl̂z. (4)
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HereLz is the projection of the atomic orbital moment onto the local atomicz-axis. The
parameterIorb was taken to be equal 2.6 mRyd [15].

The Hamiltonian (1) is written within the ASA, i.e. the interstitial region is eliminated
and all potentials entering equations (2) and (3) are assumed to be spherically symmetric
within the atomic spheres. For the present discussion, the following feature of the ASA
Hamiltonian (1) is of great importance: the direction of the spin magnetization is assumed
to be constant for all points inside the atomic sphere and is parallel to the direction of the
atomic spin moment.

Knowing the eigenfunctions of the Hamiltonian, we can determine the atomic spin
moment by integrating the spin density

S(r) =
∑
nk∈
occ.

states

ψ
†
nk(r)σψnk(r) dr (5)

over the atomic sphere:

Sν =
∫
�ν

S(r) dr (6)

whereψnk(r) arespinor eigenfunctions, andσ is the vector of the Pauli spin matrices.
Also, the atomic orbital moment of theνth atom can be calculated as an integral of the

angular momentum density (AMD) of this atom:

Lν(r) = Re

{ ∑
nk∈
occ.

states

ψ
†
nk(r)l̂ν ψnk(r)

}
(7)

over the atomic sphere.

3. Symmetry aspects

As we will see, the directions of the calculated spin and orbital moments are strongly
influenced by the symmetry of the Hamiltonian (1). This symmetry is specified by the
atomic positionsaν and the directions of the atomic magnetic momentseν . Indeed, any
symmetry operator of the type{αR|t} transforms the Hamiltonian as follows:

Ĥ(a′ν, e
′
ν) = {αR|t}Ĥ(aν, eν){αR|t}−1 (8)

wherea′ν = αRaν + t, e′ν = αReν .
To determine the symmetry operations of the Hamiltonian, we must find those operations

which commute with the Hamiltonian. As follows from equation (8), these are the operations
of the space group which leave invariant both the crystal and magnetic structures.

For further considerations, it is important that the densities (5) and (7) which are
calculated with the eigenstates of the ASA Hamiltonian (1) do not fulfil the ASA restrictions,
but rather possess spatially varying directions within the atomic spheres. Note that in the
calculation of the new directions of the spin and orbital atomic moments (see, e.g., (6)), the
full intra-atomic noncollinearity of the densities (5) and (7) is taken into account, although,
to calculate the atomic potentials entering the ASA Hamiltonian (1), the charge and spin
densities are spherically averaged in each atomic sphere.

Thus, starting with the Hamiltonian specified in terms of the directions of the atomic
moments only, we obtain the SD and AMD with the direction continuously varying within
the atomic sphere. Therefore, the following question is to be answered here: does the
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symmetry group of the ASA Hamiltonian supply an adequate tool for studying the properties
of the calculated intra-atomic vector densities?

The answer to this question is in the affirmative. Indeed, the transformation properties of
the eigenstates of the Hamiltonian reflect the symmetry of the Hamiltonian. As a result, the
densities constructed on the basis of these states preserve the whole symmetry of the initial
Hamiltonian. Hence, we reach the important conclusion thatthe ASA to the Hamiltonian of
the problem does not change the symmetry of the Hamiltonian, and, therefore, is as suitable
for the study of the symmetry properties of a noncollinear magnetic crystal as a full-potential
scheme that does not approximate the form of the Hamiltonian.

Thus, independently of which of the two schemes, the ASA or the full-potential one, is
used, the following restriction is imposed by a symmetry operation{α|t} on the intra-atomic
densities:

ξi (αr) = αξj (r) (9)

where the vector fieldξi (r) stands for the spin or angular momentum density of theith atom
defined within its atomic sphere (or muffin tin for the full-potential scheme), the vectorr is
measured from the centre of the sphere, and the atomsi andj in equation (9) are connected
by the following relation:

{α|t}ai = αai + t = aj . (10)

Note that in the case whereaj coincides withai or differs from it by a lattice translation,
equation (9) supplies a restricting symmetry condition on the density of the particular atom
i; otherwise we obtain a relation between densities of different atomsi andj .

4. Numerical results

We now turn to an application of the theory to the compound U3Sb4. Recently we have
shown [6] that the magnetic structure of this compound cannot be collinear. Starting the
calculation with all of the magnetic moments initially directed along the (001) axis, we
find that the moments of four of the six atoms move in the iterations, and settle down
forming a noncollinear cone structure, shown schematically in figure 1. Simultaneously,
the moments of the other two atoms stay parallel to the (001) axis. An explanation of
this behaviour has been given earlier [6, 8], and is based on the following statement:any
variation of the magnetic structure during the calculation must preserve the initial symmetry
of the Kohn–Sham Hamiltonian. This means, on the one hand, that if a deviation of the
magnetic moments from the initial directions would lead to a perturbation of the invariance
of the Hamiltonian with respect to at least one symmetry operation, this deviation cannot
take place, while, on the other hand, if a deviation of the magnetic moments from the initial
directions does not destroy any symmetry operation present, then there are no symmetry
reasons for the initial magnetic configuration to be retained, and the magnetic moments
will start to rotate, tending to assume the state of lowest total energy. In the last case, the
probability of the minimum of the total energy being accidentally assumed by the collinear
structure is negligibly small, and we deal with the case of noncollinearity of the magnetic
structure which is predetermined by the symmetry of the problem. Below, we supply a
‘microscopic’ picture, and show how the behaviour of the atomic moments is determined
by the properties of the corresponding intra-atomic densities.

To understand why the moments of atoms 1–4 deviate from the (001) axis, in contrast
to the moments of atoms 5 and 6, we consider the symmetry group of the Hamiltonian (1)
assuming that all of the U moments are initially directed along the (001) axis. The space
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Figure 1. A projection of the atomic positions and atomic magnetic moments of U3Sb4 onto
the xy-plane. Only the uranium atoms are shown. Atoms with the same number, whether or
not they have a prime, are translationally invariant. Small numbers give thez-coordinates of
the atomic positions. The projections in the bottom part of the figure show the deviation of the
atomic magnetic moments of atoms 1–4 from thez-direction. The self-consistently determined
angle of deviation of the atomic moments equals 7◦ [6]. The spin moment acquires the value of
1.90µB for atoms 1–4 and 1.99µB for atoms 5 and 6. The corresponding values of the orbital
moment are−3.94 and−4.18µB . The calculated total magnitude of the atomic moment is in
good agreement with the experimental estimate [16] of 2µB . The horizontal distance between
atoms 6 is the lattice constanta = 17.2192a0 (a0 is the Bohr radius). The radius of the U
atomic spheres is 3.5a0.

group of the Hamiltonian contains in this case the fourfold symmetry operationgu = {C4I|0},
which is a combination of the rotation by 90◦ about the (001) axis passing through the
position of atom 5 and the inversion. On being applied to the crystal, this symmetry
operation keeps atom 5 at its position and moves atom 6 to a translationally equivalent
position. Thus, according to equation (9), operationgu imposes a symmetry restriction on
the form of the angular momentum densities of the atoms 5 and 6. That is, assuming that
the coordinate origin coincides with the centre of the atomic sphere, the densities at the
points of the sphere with coordinates(x, y, z), (y,−x,−z), (−x,−y, z), and (−y, x,−z)
will take the form(ξx, ξy, ξz), (−ξy, ξx, ξz), (−ξx,−ξy, ξz), and(ξy,−ξx, ξz). Here we take
into account the fact that space inversion does not change the direction of the magnetic
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Figure 2. A cut of thexy-plane through the centre of atom 5. Black and grey arrows show the
projections of the spin and angular momentum densities, respectively, onto thexy-plane. The
scale for the arrows is 100 times that used in figures 4 and 5. The radius is 3.5a0, as in all
subsequent figures.

moment, because of the axial nature of the vector. Evidently, integration over the atomic
sphere leads in this case to cancellation of thex- and y-components of the density, and
causes the atomic moments to appear parallel to the initial (001) direction.

In figure 2, we display a cut of thexy plane through the centre of atom 5, and show
by arrows (in arbitrary units) the projections of the spin and angular momentum densities
onto this plane. Both the varying direction of the densities, and the symmetry leading to
the zero integrated values of the projections are clearly seen in the figure.

For atoms 1–4 the situation differs drastically. In this case the same symmetry operation
gu moves each atom to the position of another one. According to equation (9), the densities
of atoms 1–4 are connected by a simple relation that guarantees the invariance of the crystal
after the transformation. However, no symmetry restriction is imposed on the density of one
particular atom. This means that there is no symmetry reason for thex- andy-components
of the atomic moment to be zero. Therefore, the calculated magnetic moments deviate from
the (001) direction and form a noncollinear magnetic structure.

Although we now understand the stability of the direction of the magnetic moment of
atoms 5 and 6, and the inevitable deviation of the moments of atoms 1–4 from the direction
of global magnetization, we notice that the picture is not yet complete, for the fourth-order
symmetry operationgu discussed above cannot explain the equivalence of atoms 5 and 6
obtained in the calculation. Also there is still no argument to explain why the moments of
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Figure 3. A cut of the xy-plane through the centre of atom 1. Black and grey arrows show
the projections of the spin and angular momentum densities, respectively, onto thexy-plane.
The intensity of the greyscaled background represents the length of thez-component of the spin
density. The scale for the arrows is ten times that used in figures 4 and 5.

atoms 1–4 are parallel to the coordinate planes,xz or yz, as can be seen in figure 1.
To complete the description, the anti-unitary operation of time-reversal,K, must be taken

into account. Evidently, a magnetic crystal cannot be invariant with respect to a pure time
reversal, because this operation reverses the direction of any magnetic moment. However,
time reversal can enter the symmetry group in combination with a unitary transformation.
This happens in the case of U3Sb4. The symmetry group contains four operations of such
a type. For our purposes it is sufficient to consider one of them, since the other can be
obtained by multiplication with the unitary operationgu. The transformation{C2x |(01

2
1
4)}K

is a symmetry operation of the initial collinear structure. Here C2x is 180◦ rotation about
thex-axis. This operation, first, transposes atoms 5 and 6, and determines their equivalence.
Second, it keeps atoms 1 and 2 at their (or translationally equivalent) positions, and
according to equation (9) imposes a symmetry restriction on the form of the intra-atomic
densities of these atoms. A unitary rotation by 180◦ about thex-axis, accompanied by the
time reversal, is equivalent to the reflection of the magnetization vectors in theyz-plane.
Therefore, both the spin and angular momentum densities of atoms 1 and 2 have to be
invariant under this transformation. Evidently, the integral of the density over the atomic
volume results in this case in an atomic moment parallel to theyz-plane.

To illustrate how the anti-unitary operation influences the SD and AMD, we show in
figures 3–5 cuts of three coordinate planes through the centre of atom 1. The symmetry
with respect to the reflection in theyz-plane is clearly seen in thexy- andxz-cuts (figures 3



7102 K Knöpfle et al

Figure 4. A cut of thexz-plane through the centre of atom 1. Black and grey arrows show the
projections of the spin and angular momentum densities, respectively, onto thexz-plane.

and 4): there are uncompensated components of the spin and orbital moments along they-
andz-axes, in contrast to the zero integral value of thex-projection. Theyz-plane (figure
5) shows no symmetry, and correspondingly no compensation of the components of the
densities along they- andz-axes.

Another important property of the SD and AMD that follows from the analysis of
figures 2–5 is a mutual noncollinearity of the spin and angular momentum density vectors.
The angle formed by two densities at a particular point cannot be determined without
direct calculation, and is accidental from the point of view of symmetry. Since there is no
symmetry operation that relates the directions of the two densities, this result can be treated
as a necessary consequence of the symmetry of the problem. The mutual noncollinearity
of two densities leads to the possibility of noncollinearity of the atomic spin and orbital
moments. Indeed, integration of the SD and AMD of atom 1 results [6] in the noncollinearity
of the spin and orbital moments of this atom.

In contrast to those of atom 1, the spin and orbital moments of atom 5 are collinear. This
collinearity is directly related to the symmetry axis passing through atom 5: the symmetry
properties of both densities result in the compensation of the components of the densities
that are perpendicular to the (001) axis. Correspondingly, both the spin and the orbital
moments of atom 5 are collinear with the (001) axis, and, therefore, with each other.

Thus, the spin and orbital moments of an atom in a crystal are collinear only in the
case of an axial symmetry imposed on the intra-atomic SD and AMD. Conversely, in the
absence of this symmetry, both intra-atomic noncollinearity of the spin and orbital moments
of the same atom and intra-atomic noncollinearity of the moments of different atoms must
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Figure 5. A cut of theyz-plane through the centre of atom 1. Black and grey arrows show the
projections of the spin and angular momentum densities, respectively, onto theyz-plane.

appear.
Note that an isolated magnetic atom possesses the axial symmetry necessary for the

collinearity of the atomic spin and orbital moments. It is the crystal environment that,
under certain circumstances, leads to a loss of the axial symmetry, and consequently to
noncollinearity. If, however, the strength of the intra-atomic spin–orbit coupling of the 5f
electrons is stronger than the influence of the crystal environment, the disturbance of the
axial symmetry will not be large. This is indeed the case for the U compounds, for we can
see from figure 5 that theyz-plane through atom 1 is divided by the axis of the atomic
moment into two almost mirror-invariant parts. Correspondingly, the angle between the
atomic spin and orbital moments assumes only a small value of about 1◦.

We finally want to comment briefly on the varying intensity of the background in
figure 3. This intensity represents the magnitude of thez-component of the spin density at
the corresponding point of the plane. The grey colour of the background is very intense for
the ring area with the internal radius of about 0.8a0 and the external radius of about 1.6a0,
wherea0 denotes the Bohr radius. (The radius of the atomic sphere is equal to 3.5a0.) The
intensity decreases rapidly both in the direction of the centre and the direction of the border
of the atom. An analysis of the calculated wave functions reveals (not surprisingly) that the
most intense background corresponds to the spatial region of high 5f-electron density, thus
confirming that the main contribution to the magnetic moments of the U atoms originates
from the 5f electrons.

Summarizing, in the present paper we consider the formation of the atomic spin and
orbital moments by studying the symmetry properties of the intra-atomic spin and angular



7104 K Knöpfle et al

momentum densities, focusing on general principles, and elaborating by means of the
realistic example of U3Sb4 which is a noncollinear ferromagnet. We expose the role of
these properties in developing noncollinear magnetic configurations of atomic moments,
as well as in the phenomenon of the intra-atomic noncollinearity of the spin and orbital
moments.
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